Forecasting Using Neural Network and Fuzzy Time Series: a Relative Study Using Sugar Production Data
نویسندگان
چکیده
This paper reflects a neural network approach together with the methods of fuzzy time series of forecasting sugar production data.On behalf of forecsaters , time series forecasting that have varied variations is an important issue.One of the such process is the agriculture production and its productivity and it is not hold by an stoichastic process because of great non-linear due to great non-linear due to different effective parameters like rainfall, disaster, disease, weather etc. This study comprises of fuzzy set theory and uses various models of fuzzy time series for forecasting the sugar production.From FCI , the sugar production past data have been gathered for investigation of the outcomes.Comparison and examination has been done of the sugar production forecasted data.
منابع مشابه
Long Term Forecasting with Fuzzy Time Series and Neural Network: a comparative study using Sugar production data
Forecasting of time series that have seasonal and other variations remains an important problem for forecasters. This paper presents a neural network (NN) approach along with a fuzzy time series methods to forecasting sugar production in India. The agriculture production and productivity is one of the such processes, which is not governed by any deterministic process due to highly non linearity...
متن کاملPrediction using Sugar production data : Neural and Fuzzy time series
. This study covers inquisitive approach to develop an Artificial Neural Network (ANN) model to foresee sugarcane production. The various input data set comprises the agro-climatic and socio-economic factors influencing sugarcane production whereas the output is real sugarcane output. Different forecasting techniques have been deployed on the concept of fuzzy time series data, whereas precision...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملThe use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملVehicle's velocity time series prediction using neural network
This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015